Uo-convergence and Its Applications to Cesàro Means in Banach Lattices
نویسندگان
چکیده
A net (xα) in a vector lattice X is said to uo-converge to x if |xα−x|∧u o −→ 0 for every u ≥ 0. In the first part of this paper, we study some functional-analytic aspects of uo-convergence. We prove that uo-convergence is stable under passing to and from regular sublattices. This fact leads to numerous applications presented throughout the paper. In particular, it allows us to improve several results in [27, 28]. In the second part, we use uo-convergence to study convergence of Cesàro means in Banach lattices. In particular, we establish an intrinsic version of Komlós’ Theorem, which extends the main results of [36, 16, 32] in a uniform way. We also develop a new and unified approach to Banach-Saks properties and Banach-Saks operators based on uo-convergence. This approach yields, in particular, short direct proofs of several results in [22, 25, 26].
منابع مشابه
Some results about unbounded convergences in Banach lattices
Suppose E is a Banach lattice. A net in E is said to be unbounded absolute weak convergent ( uaw-convergent, for short) to provided that the net convergences to zero, weakly. In this note, we further investigate unbounded absolute weak convergence in E. We show that this convergence is stable under passing to and from ideals and sublattices. Compatible with un-convergenc, we show that ...
متن کاملStrong Convergence of the Iterations of Quasi $phi$-nonexpansive Mappings and its Applications in Banach Spaces
In this paper, we study the iterations of quasi $phi$-nonexpansive mappings and its applications in Banach spaces. At the first, we prove strong convergence of the sequence generated by the hybrid proximal point method to a common fixed point of a family of quasi $phi$-nonexpansive mappings. Then, we give applications of our main results in equilibrium problems.
متن کاملConvergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).
متن کاملOn some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces
In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...
متن کاملConvergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.
متن کامل